Hello guys! Kalian semua pasti tahu laser, kan? Yap, di dalam kehidupan sehari-hari laser sering digunakan di berbagai bidang, seperti bidang kedokteran, industri, fotografi, dan lain sebagainya. Nah, terus apa hubungan laser dengan energi foton? Perlu kalian ketahui bahwa laser merupakan salah satu bukti dari adanya energi foton. Meski tidak dapat diamati langsung dengan mata normal, tetapi sinar laser sebenarnya memancarkan partikel-partikel foton. Nah, biar lebih jelasnya, yuk kita kupas tuntas bareng! Kuantum cahaya atau foton merupakan paket-paket energi radiasi elektromagnetik. Nah, konsep foton ini berasal dari para fisikawan yang berpendapat bahwa gelombang cahaya dianggap memiliki suatu partikel tidak bermassa yang disebut foton. Sebagai partikel yang bergerak, tak heran apabila foton memiliki energi. Oleh karena itu, rumus energi foton adalah sebagai berikut. Rumus Energi Foton Arsip Zenius Lalu, bagaimana jika foton-nya ada banyak? Nah, jika begitu kalian bisa menggunakan rumus energi foton seperti di bawah ini! Keterangan E= energi foton J n =bilangan bulat yang menyatakan bilangan kuantum h= konstanta planck 6,63 x 10-34 Js f = frekuensi foton Hz Perlu kalian ketahui bahwa foton terdapat pada semua energi, mulai dari sinar berenergi tinggi gamma seperti cahaya tampak, gelombang inframerah, hingga gelombang berenergi rendah seperti radio. Selain itu, semua jenis foton juga memiliki kecepatan cahaya, lho! Lalu, apa saja sih, teknologi yang memanfaatkan energi foton? Geiger Counter Dok. Wikimedia Commons Contoh pengaplikasian energi foton antara lain perangkat Charge-Coupled Device CCD yang merupakan sensor untuk merekam gambar dan Geiger Counter yang merupakan sebuah alat pengukur radiasi ionisasi. Setelah paham dengan konsep dan rumusnya, yuk kita asah pengetahuan kita tentang energi foton dengan mengerjakan contoh soal sederhana di bawah! Baca Juga Hukum Kirchhoff 1 dan 2 Penemu, Rumus, dan Contoh Soal Contoh Soal Energi Foton Contoh Soal Energi Foton Dok. Pixabay Berikut ini merupakan karakteristik dari foton, kecuali … A. setiap foton membawa energi yang berbeda-beda tergantung frekuensinya B. foton bergerak dengan kecepatan 3 x 108 m/s C. setiap foton dapat menumbuk sebuah elektron pada logam D. foton tidak bermassa E. foton dapat menghamburkan neutron pada inti atom Jawaban Karena foton tidak memiliki cukup energi untuk menghamburkan proton pada inti atom, maka jawaban yang tepat adalah E. foton dapat menghamburkan neutron pada inti atom. Baca Juga Peluruhan Radioaktif dan Jenisnya – Materi Fisika Kelas 12 2. Berikut grafik hubungan energi dengan frekuensi gelombang yang tepat adalah … A. B. C. D. E. Jawaban Hubungan antara energi dan frekuensi adalah E=hf Karena h merupakan konstanta planck, maka hubungan energi dengan frekuensi merupakan hubungan yang linear. Semakin besar frekuensi maka energi juga akan semakin besar. Maka, jawabannya adalah A. Baca Juga Gelombang Elektromagnetik dan Cara Kerja Bluetooth Finally, selesai juga nih, pembahasan kita mengenai energi foton. Gimana guys, kalian sudah paham belum dengan energi foton? Bagi yang masih bingung mengenai materi hari ini kalian bisa kok tonton video penjelasannya lewat aplikasi Zenius. Caranya mudah banget, kalian cuma perlu download aplikasi Zenius aja, lho. So, sampai jumpai di artikel selanjutnya, ya. See you!Danneutron adalah penyusun atom yang tidak memiliki muatan atau elektron. Suatu benda yang memiliki muatan yang sama maka benda tersebut akan saling tolak menolak apabila saling didekatkan satu sama lain. Mesin fotocopy sendiri memiliki bagian utama yang berupa pelat foto konduktif. Lagu definisi akan bekerja mengantarkan listrik apabila
GEJALAKUANTUM. a. Pengertian Efek Fotolistrik. Efek fotolistrik adalah munculnya arus listrik akibat permukaan suatu bahan logam disinari. Arus listrik yang muncul ini adalah arus elektron yang bermuatan negatif. Sinar yang datang di permukaan bahan adalah menyebabkan elektron dari bahan keluar dan lepas dari bahan.
A. Efek Fotolistrik Efek fotolistrik adalah peristiwa terlepasnya elektron dari permukaan logam karena logam tersebut disinari cahaya dengan frekuensi tertentu. Elektron yang terlepas dari permukaan logam tersebut disebut dengan elektron foto photoelectrons. Gambar dibawah ini menggambarkan skema alat yang digunakan untuk mengadakan percobaan Efek fotolistrik Alat tersebut terdiri atas tabung hampa udara yang dilengkapi dengan dua elektroda A dan B dan dihubungkan dengan sumber tegangan arus searah DC. Pada saat alat tersebut dibawa ke dalam ruang gelap, maka amperemeter tidak menunjukkan adanya arus listrik. Akan tetapi pada saat permukaan Katoda A dijatuhkan sinar amperemeter menunjukkan adanya arus listrik. Hal ini menunjukkan adanya aliran arus listrik. Aliran arus ini terjadi karena adanya elektron yang terlepas dari permukaan A bergerak menuju B. Apabila tegangan baterai diperkecil sedikit demi sedikit, ternyata arus listrik juga semakin mengecil dan jika tegangan terus diperkecil sampai nilainya negatif, ternyata pada saat tegangan mencapai nilai tertentu -Vo, amperemeter menunjuk angka nol yang berarti tidak ada arus listrik yang mengalir atau tidak ada elektron yang keluar dari keping A. Potensial Vo ini disebut potensial henti, yang nilainya tidak tergantung pada intensitas cahaya yang dijatuhkan. Hal ini menunjukkan bahwa energi kinetik maksimum elektron yang keluar dari permukaan adalah sebesar dengan Ek = energi kinetik elektron foto J atau eV m = massa elektron kg v = kecepatan elektron m/s e = muatan elektron C Vo = potensial henti volt Berdasarkan hasil percobaan tersebut ternyata tidak semua cahaya foton yang dijatuhkan pada keping akan menimbulkan efek fotolistrik. Efek fotolistrik akan timbul jika frekuensinya lebih besar dari frekuensi tertentu. Demikian juga frekuensi minimal yang mampu menimbulkan efek fotolistrik tergantung pada jenis logam yang dipakai. Teori gelombang belum dapat menjelaskan tentang sifat-sifat penting yang terjadi pada efek fotolistrik,yaitu a. Menurut teori gelombang, energi kinetik elektron foto harus bertambah besar jika intensitas foton diperbesar. Akan tetapi kenyataan menunjukkan bahwa energi kinetik elektron foto tidak tergantung pada intensitas foton yang dijatuhkan. b. Menurut teori gelombang, efek fotolistrik dapat terjadi pada sembarang frekuensi, asal intensitasnya memenuhi. Akan tetapi kenyataannya efek fotolistrik baru akan terjadi jika frekuensi melebihi harga tertentu dan untuk logam tertentu dibutuhkan frekuensi minimal yang tertentu agar dapat timbul elektron foto. c. Menurut teori gelombang diperlukan waktu yang cukup untuk melepaskan elektron dari permukaan logam. Akan tetapi kenyataannya elektron terlepas dari permukaan logam dalam waktu singkat spontan dalam waktu kurang 10-9 sekon setelah waktu penyinaran. d. Teori gelombang tidak dapat menjelaskan mengapa energi kinetik maksimum elektron foto bertambah jika frekuensi foton yang dijatuhkan diperbesar. Teori kuantum mampu menjelaskan peristiwa ini karena menurut teori kuantum bahwa foton memiliki energi yang sama, yaitu sebesar hf, sehingga menaikkan intensitas foton berarti hanya menambah banyaknya foton, tidak menambah energi foton selama frekuensi foton tetap. Menurut Einstein energi yang dibawa foton adalah dalam bentuk paket, sehingga energi ini jika diberikan pada elektron akan diberikan seluruhnya, sehingga foton tersebut lenyap. Oleh karena elektron terikat pada energi ikat tertentu, maka diperlukan energi minimal sebesar energi ikat elektron tersebut. Besarnya energi minimal yang diperlukan untuk melepaskan elektron dari energi ikatnya disebut fungsi kerja Wo atau energi ambang. Besarnya Wo tergantung pada jenis logam yang digunakan. Apabila energi foton yang diberikan pada elektron lebih besar dari fungsi kerjanya, maka kelebihan energi tersebut akan berubah menjadi energi kinetik elektron. Akan tetapi jika energi foton lebih kecil dari energi ambangnya hf f’, sedangkan panjang gelombang yang terhambur menjadi tambah besar yaitu l > l ’. Dengan menggunakan hukum kekekalan momentum dan kekekalan energi Compton berhasil menunjukkan bahwa perubahan panjang gelombang foton terhambur dengan panjang gelombang semula, yang memenuhi persamaan dengan l = panjang gelombang sinar X sebelum tumbukan m l ’= panjang gelombang sinar X setelah tumbukan m h = konstanta Planck 6,625 × 10-34 Js mO = massa diam elektron 9,1 × 10-31 kg c = kecepatan cahaya 3 × 108 ms-1 q = sudut hamburan sinar X terhadap arah semula Besaran sering disebut dengan panjang gelombang Compton. Jadi dengan hasil pengamatan Compton tentang hamburan foton dari sinar X menunjukkan bahwa foton dapat dipandang sebagai partikel, sehingga memperkuat teori kuantum yang mengatakan bahwa cahaya mempunyai dua sifat, yaitu cahaya dapat sebagai gelombang dan cahaya dapat bersifat sebagai partikel yang sering disebut sebagai dualisme gelombang cahaya. Soal latihan Soal Fisika Kelas 12 Tentang Dualisme Gelombang PartikeluiJugad.